Compact slit-based couplers for metal-dielectric-metal plasmonic waveguides.

نویسندگان

  • Yin Huang
  • Changjun Min
  • Georgios Veronis
چکیده

We introduce compact wavelength-scale slit-based structures for coupling free space light into metal-dielectric-metal (MDM) subwave-length plasmonic waveguides. We first show that for a single slit structure the coupling efficiency is limited by a trade-off between the light power coupled into the slit, and the transmission of the slit-MDM waveguide junction. We next consider a two-section slit structure, and show that for such a structure the upper slit section enhances the coupling of the incident light into the lower slit section. The optimized two-section slit structure results in ∼ 2.3 times enhancement of the coupling into the MDM plasmonic waveguide compared to the optimized single-slit structure. We finally consider a symmetric double-slit structure, and show that for such a structure the surface plasmons excited at the metal-air interfaces are partially coupled into the slits. Thus, the coupling of the incident light into the slits is greatly enhanced, and the optimized double-slit structure results in ∼ 3.3 times coupling enhancement compared to the optimized single-slit structure. In all cases the coupler response is broadband.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Theoretical investigation of compact couplers between dielectric slab waveguides and two-dimensional metal-dielectric-metal plasmonic waveguides.

We theoretically investigate the properties of compact couplers between high-index contrast dielectric slab waveguides and two-dimensional metal-dielectric-metal subwavelength plasmonic waveguides. We show that a coupler created by simply placing a dielectric waveguide terminated flat at the exit end of a plasmonic waveguide can be designed to have a transmission efficiency of ~70% at the optic...

متن کامل

Metal-dielectric-metal plasmonic waveguide devices for manipulating light at the nanoscale

We review some of the recent advances in the development of subwavelength plasmonic devices for manipulating light at the nanoscale, drawing examples from our own work in metal-dielectric-metal (MDM) plasmonic waveguide devices. We introduce bends, splitters, and mode converters for MDM waveguides with no additional loss. We also demonstrate that optical gain provides a mechanism for on/off swi...

متن کامل

Nonlinear couplers with tapered plasmonic waveguides.

We suggest and demonstrate numerically that, by employing tapered waveguides in the geometry of a directional coupler, we can enhance dramatically the performance for optical switching of nonlinear plasmonic couplers operating at the nanoscale, overcoming the detrimental losses but preserving the subwavelength confinement. We demonstrate that, by an appropriate choice of the taper angle of the ...

متن کامل

High Performance Sub-Diffraction Limit Three Channel Plasmonic Demultiplexer

We have proposed a new ultra-compact optical demultiplexer based on metal-insulator-metal plasmonic waveguides aperture-coupled to the ring resonators. Our proposed device has high performance, small footprint, and high potential for integration and development to more channels.

متن کامل

Design and Simulation of a Metal-Insulator-Metal Filter Based on Plasmonic Split Ring

In this paper, a plasmonic filter made of a split ring, two U-shaped structures and two straight waveguides is designed and investigated. In the proposed structure, the split ring and U-shaped structures are situated between straight waveguides. Simulations are done based on FDTD method. Split ring, U-shaped structures and straight waveguides are made of air in the silver background. In the pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Optics express

دوره 20 20  شماره 

صفحات  -

تاریخ انتشار 2012